Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
Mol Biol Rep ; 51(1): 480, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578387

RESUMO

Fragile X syndrome (FXS) is a genetic disorder characterized by mutation in the FMR1 gene, leading to the absence or reduced levels of fragile X Messenger Ribonucleoprotein 1 (FMRP). This results in neurodevelopmental deficits, including autistic spectrum conditions. On the other hand, Fragile X-associated tremor/ataxia syndrome (FXTAS) is a distinct disorder caused by the premutation in the FMR1 gene. FXTAS is associated with elevated levels of FMR1 mRNA, leading to neurodegenerative manifestations such as tremors and ataxia.Mounting evidence suggests a link between both syndromes and mitochondrial dysfunction (MDF). In this minireview, we critically examine the intricate relationship between FXS, FXTAS, and MDF, focusing on potential therapeutic avenues to counteract or mitigate their adverse effects. Specifically, we explore the role of mitochondrial cofactors and antioxidants, with a particular emphasis on alpha-lipoic acid (ALA), carnitine (CARN) and Coenzyme Q10 (CoQ10). Findings from this review will contribute to a deeper understanding of these disorders and foster novel therapeutic strategies to enhance patient outcomes.


Assuntos
Síndrome do Cromossomo X Frágil , Doenças Mitocondriais , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/genética , Tremor/tratamento farmacológico , Tremor/genética , Antioxidantes/uso terapêutico , Ataxia/tratamento farmacológico , Ataxia/genética , Proteína do X Frágil de Retardo Mental/genética
4.
Cells ; 12(24)2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132093

RESUMO

Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sulforaphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60-88 with FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sulforaphane. While there were nominal improvements in multiple clinical measures, they were not significantly different after correction for multiple comparisons. PBMC energetic measures showed that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP production. The ratio of complex I to complex II showed positive correlations with the MoCA and BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were correlated with clinical improvements.


Assuntos
Leucócitos Mononucleares , Tremor , Adulto , Masculino , Feminino , Humanos , Tremor/tratamento farmacológico , Tremor/genética , Tremor/complicações , Proteína do X Frágil de Retardo Mental/genética , Ataxia/tratamento farmacológico , Ataxia/genética , Biomarcadores
5.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139097

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects older premutation carriers (55-200 CGG repeats) of the fragile X gene. Despite the high prevalence of the FXTAS disorder, neuropathology studies of individuals affected by FXTAS are limited. We performed hematoxylin and eosin (H&E) staining in the hippocampus of 26 FXTAS cases and analyzed the tissue microscopically. The major neuropathological characteristics were white matter disease, intranuclear inclusions in neurons and astrocytes, and neuron loss. Astrocytes contained more and larger inclusions than neurons. There was a negative correlation between age of death and CGG repeat length in cases over the age of 60. The number of astroglial inclusions (CA3 and dentate gyrus) and the number of CA3 neuronal inclusions increased with elevated CGG repeat length. In the two cases with a CGG repeat size less than 65, FXTAS intranuclear inclusions were not present in the hippocampus, while in the two cases with less than 70 (65-70) CGG repeat expansion, neurons and astrocytes with inclusions were occasionally identified in the CA1 sub-region. These findings add hippocampus neuropathology to the previously reported changes in other areas of the brain in FXTAS patients, with implications for understanding FXTAS pathogenesis.


Assuntos
Síndrome do Cromossomo X Frágil , Tremor , Humanos , Tremor/genética , Substância Cinzenta/metabolismo , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/patologia , Ataxia/genética , Hipocampo/metabolismo , Expansão das Repetições de Trinucleotídeos
6.
Front Hum Neurosci ; 17: 1271158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034068

RESUMO

Aging FMR1 premutation carriers are at risk of developing neurodegenerative disorders, including fragile X-associated tremor/ataxia syndrome (FXTAS), and there is a need to identify biomarkers that can aid in identification and treatment of these disorders. While FXTAS is more common in males than females, females can develop the disease, and some evidence suggests that patterns of impairment may differ across sexes. Few studies include females with symptoms of FXTAS, and as a result, little information is available on key phenotypes for tracking disease risk and progression in female premutation carriers. Our aim was to examine quantitative motor and cognitive traits in aging premutation carriers. We administered oculomotor tests of visually guided/reactive saccades (motor) and antisaccades (cognitive control) in 22 premutation carriers (73% female) and 32 age- and sex-matched healthy controls. Neither reactive saccade latency nor accuracy differed between groups. FMR1 premutation carriers showed increased antisaccade latencies relative to controls, both when considering males and females together and when analyzing females separately. Reduced saccade accuracy and increased antisaccade latency each were associated with more severe clinically rated neuromotor impairments. Findings indicate that together male and female premutation carriers show a reduced ability to rapidly exert volitional control over prepotent responses and that quantitative differences in oculomotor behavior, including control of visually guided and antisaccades, may track with FXTAS - related degeneration in male and female premutation carriers.

7.
Cerebellum ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37906407

RESUMO

Cerebellar syndromes are clinically and etiologically heterogeneous and can be classified as hereditary, neurodegenerative non-hereditary, or acquired. Few data are available on the frequency of each form in the clinical setting. Growing interest is emerging regarding the genetic forms caused by triplet repeat expansions. Alleles with repeat expansion lower than the pathological threshold, termed intermediate alleles (IAs), have been found to be associated with disease manifestation. In order to assess the relevance of IAs as a cause of cerebellar syndromes, we enrolled 66 unrelated Italian ataxic patients and described the distribution of the different etiology of their syndromes and the frequency of IAs. Each patient underwent complete clinical, hematological, and neurophysiological assessments, neuroimaging evaluations, and genetic tests for autosomal dominant cerebellar ataxia (SCA) and fragile X-associated tremor/ataxia syndrome (FXTAS). We identified the following diagnostic categories: 28% sporadic adult-onset ataxia, 18% cerebellar variant of multiple system atrophy, 9% acquired forms, 9% genetic forms with full-range expansion, and 12% cases with intermediate-range expansion. The IAs were six in the FMR1 gene, two in the gene responsible for SCA8, and one in the ATXN2 gene. The clinical phenotype of patients carrying the IAs resembles, in most of the cases, the one associated with full-range expansion. Our study provides an exhaustive description of the causes of cerebellar ataxia, estimating for the first time the frequency of IAs in SCAs- and FXTAS-associated genes. The high percentage of cases with IAs supports further screening among patients with cerebellar syndromes.

8.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830578

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in adult FMR1 premutation carriers. The neuropathological hallmark of FXTAS is an intranuclear inclusion in neurons and astrocytes. Nearly 200 different proteins have been identified in FXTAS inclusions, being the small ubiquitin-related modifier 2 (SUMO2), ubiquitin and p62 the most highly abundant. These proteins are components of the protein degradation machinery. This study aimed to characterize SUMO2/3 expression levels and autophagy process in human postmortem brain samples and skin fibroblast cultures from FXTAS patients. Results revealed that FXTAS postmortem brain samples are positive for SUMO2/3 conjugates and supported the idea that SUMO2/3 accumulation is involved in inclusion formation. Insights from RNA-sequencing data indicated that SUMOylation processes are significantly upregulated in FXTAS samples. In addition, the analysis of the autophagy flux showed the accumulation of p62 protein levels and autophagosomes in skin fibroblasts from FXTAS patients. Similarly, gene set analysis evidenced a significant downregulation in gene ontology terms related to autophagy in FXTAS samples. Overall, this study provides new evidence supporting the role of SUMOylation and autophagic processes in the pathogenic mechanisms underlying FXTAS.


Assuntos
Síndrome do Cromossomo X Frágil , Tremor , Adulto , Humanos , Tremor/genética , Tremor/metabolismo , Tremor/patologia , Ubiquitina/metabolismo , Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/patologia , Ataxia/patologia , Autofagia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
9.
Cells ; 12(18)2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37759552

RESUMO

The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.


Assuntos
Proteína do X Frágil de Retardo Mental , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Mutação/genética , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia
10.
Cells ; 12(17)2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37681866

RESUMO

The course of pathophysiological mechanisms involved in fragile X-associated tremor/ataxia syndrome (FXTAS) remains largely unknown. Previous proteomics and metabolomics studies conducted in blood samples collected from FMR1 premutation carriers with FXTAS reported abnormalities in energy metabolism, and precursors of gluconeogenesis showed significant changes in plasma expression levels in FMR1 premutation carriers who developed FXTAS. We conducted an analysis of postmortem human brain tissues from 44 donors, 25 brains with FXTAS, and 19 matched controls. We quantified the metabolite relative abundance in the inferior temporal gyrus and the cerebellum using untargeted mass spectrometry (MS)-based metabolomics. We investigated how the metabolite type and abundance relate to the number of cytosine-guanine-guanine (CGG) repeats, to markers of neurodegeneration, and to the symptoms of FXTAS. A metabolomic analysis identified 191 primary metabolites, the data were log-transformed and normalized prior to the analysis, and the relative abundance was compared between the groups. The changes in the relative abundance of a set of metabolites were region-specific with some overlapping results; 22 metabolites showed alterations in the inferior temporal gyrus, while 21 showed differences in the cerebellum. The relative abundance of cytidine was decreased in the inferior temporal gyrus, and a lower abundance was found in the cases with larger CGG expansions; oleamide was significantly decreased in the cerebellum. The abundance of 11 metabolites was influenced by changes in the CGG repeat number. A histological evaluation found an association between the presence of microhemorrhages in the inferior temporal gyrus and a lower abundance of 2,5-dihydroxypyrazine. Our study identified alterations in the metabolites involved in the oxidative-stress response and bioenergetics in the brains of individuals with FXTAS. Significant changes in the abundance of cytidine and oleamide suggest their potential as biomarkers and therapeutic targets for FXTAS.


Assuntos
Encéfalo , Tremor , Humanos , Citidina , Citosina , Guanina , Metabolômica , Ataxia/genética , Proteína do X Frágil de Retardo Mental/genética
11.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686279

RESUMO

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder associated with the FMR1 premutation. Currently, it is not possible to determine when and if individual premutation carriers will develop FXTAS. Thus, with the aim to identify biomarkers for early diagnosis, development, and progression of FXTAS, along with associated dysregulated pathways, we performed blood proteomic profiling of premutation carriers (PM) who, as part of an ongoing longitudinal study, emerged into two distinct groups: those who developed symptoms of FXTAS (converters, CON) over time (at subsequent visits) and those who did not (non-converters, NCON). We compared these groups to age-matched healthy controls (HC). We assessed CGG repeat allele size by Southern blot and PCR analysis. The proteomic profile was obtained by liquid chromatography mass spectrometry (LC-MS/MS). We identified several significantly differentiated proteins between HC and the PM groups at Visit 1 (V1), Visit 2 (V2), and between the visits. We further reported the dysregulated protein pathways, including sphingolipid and amino acid metabolism. Our findings are in agreement with previous studies showing that pathways involved in mitochondrial bioenergetics, as observed in other neurodegenerative disorders, are significantly altered and appear to contribute to the development of FXTAS. Lastly, we compared the blood proteome of the PM who developed FXTAS over time with the CSF proteome of the FXTAS patients recently reported and found eight significantly differentially expressed proteins in common. To our knowledge, this is the first report of longitudinal proteomic profiling and the identification of unique biomarkers and dysregulated protein pathways in FXTAS.


Assuntos
Proteoma , Proteômica , Humanos , Cromatografia Líquida , Estudos Longitudinais , Espectrometria de Massas em Tandem , Tremor , Biomarcadores , Proteína do X Frágil de Retardo Mental/genética
12.
ACS Chem Neurosci ; 14(19): 3646-3654, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37698929

RESUMO

The cationic organo ruthenium(II) salts ([Ru(p-cymene)(ipit)(Cl)](Cl) (RuS), 1-isopropyl-3-(pyridin-2-yl)-imidazol-2-thione (ipit) and [Ru(p-cymene)(ipis)(Cl)](Cl) (RuSe), 1-isopropyl-3-(pyridin-2-yl)-imidazol-2-selenone (ipis)) are isolated, and their binding efficacy with d(CGG)15 quadruplex is investigated. Circular dichroism (CD) wavelength scan titration experiments of RuS and RuSe compounds with the intermolecular parallel quadruplex formed by d(CGG)15 (associated with neurodegenerative/neuromuscular/neuronal intranuclear inclusion disorders like FXTAS, OPMD, OPDM types 1-4, and OPML as well as FXPOI) and with the control d(CGG)15·d(CCG)15 duplex indicate their specificity toward the former. Electrophoretic mobility shift titration experiments also confirm the binding of the ligands with d(CGG)15. CD thermal denaturation experiments indicate that both RuS and RuSe destabilize the quadruplex, specifically at 10 mM concentration of the ligands. This is further confirmed by 1D 1H NMR experiments. Such a destabilizing effect of these ligands on the d(CGG)15 quadruplex indicates that RuS and RuSe chalcogen complexes can act as a template for the design of novel molecules for the diagnostics and/or therapeutics of CGG repeat expansion-associated diseases.


Assuntos
Doenças Neuromusculares , Sais , Humanos , DNA , Cimenos
13.
Nutr Neurosci ; : 1-10, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776526

RESUMO

Trehalose is a naturally occurring sugar found in various food and pharmaceutical preparations with the ability to enhance cellular proteostasis and reduce the formation of toxic intracellular protein aggregates, making it a promising therapeutic candidate for various neurodegenerative disorders. OBJECTIVES: Here, we explored the effectiveness of nutritional trehalose supplementation in ameliorating symptoms in a mouse model of Fragile X-associated tremor/ataxia syndrome (FXTAS), an incurable late onset manifestation of moderately expanded trinucleotide CGG repeat expansion mutations in the 5' untranslated region of the fragile X messenger ribonucleoprotein 1 gene (FMR1). METHODS: An inducible mouse model of FXTAS expressing 90 CGG repeats in the brain had been previously developed, which faithfully captures hallmarks of the disorder, the formation of intracellular inclusions, and the disturbance of motor function. Taking advantage of the inducible nature of the model, we investigated the therapeutic potential of orally administered trehalose under two regimens, modelling disease prevention and disease treatment. RESULTS AND DISCUSSION: Trehalose's effectiveness in combating protein aggregation is frequently attributed to its ability to induce autophagy. Accordingly, trehalose supplementation under the prevention regimen ameliorated the formation of intranuclear inclusions and improved the motor deficiencies resulting from the induced expression of 90 CGG repeats, but it failed to reverse the existing nuclear pathology as a treatment strategy. Given the favorable safety profile of trehalose, it is promising to further explore the potential of this agent for early stage FXTAS.

14.
Cells ; 12(14)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37508562

RESUMO

Brain changes at the end-stage of fragile X-associated tremor/ataxia syndrome (FXTAS) are largely unknown due to mobility impairment. We conducted a postmortem MRI study of FXTAS to quantify cerebrovascular disease, brain atrophy and iron content, and examined their relationships using principal component analysis (PCA). Intracranial hemorrhage (ICH) was observed in 4/17 FXTAS cases, among which one was confirmed by histologic staining. Compared with seven control brains, FXTAS cases showed higher ratings of T2-hyperintensities (indicating cerebral small vessel disease) in the cerebellum, globus pallidus and frontoparietal white matter, and significant atrophy in the cerebellar white matter, red nucleus and dentate nucleus. PCA of FXTAS cases revealed negative associations of T2-hyperintensity ratings with anatomic volumes and iron content in the white matter, hippocampus and amygdala, that were independent from a highly correlated number of regions with ICH and iron content in subcortical nuclei. Post-hoc analysis confirmed PCA findings and further revealed increased iron content in the white matter, hippocampus and amygdala in FXTAS cases compared to controls, after adjusting for T2-hyperintensity ratings. These findings indicate that both ischemic and hemorrhagic brain damage may occur in FXTAS, with the former being marked by demyelination/iron depletion and atrophy, and the latter by ICH and iron accumulation in basal ganglia.


Assuntos
Transtornos Cerebrovasculares , Síndrome do Cromossomo X Frágil , Humanos , Tremor/diagnóstico por imagem , Tremor/patologia , Ferro , Ataxia/diagnóstico por imagem , Ataxia/patologia , Síndrome do Cromossomo X Frágil/diagnóstico por imagem , Síndrome do Cromossomo X Frágil/patologia , Imageamento por Ressonância Magnética , Atrofia
16.
Neurobiol Dis ; 184: 106212, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37352983

RESUMO

Neurodegeneration in Fragile X-associated tremor/ataxia syndrome (FXTAS) is caused by a CGG trinucleotide repeat expansion in the 5' UTR of FMR1. Expanded CGG repeat RNAs form stable secondary structures, which in turn support repeat-associated non-AUG (RAN) translation to produce toxic peptides. The parameters that impact RAN translation initiation efficiency are not well understood. Here we used a Drosophila melanogaster model of FXTAS to evaluate the role of the eIF4G family of eukaryotic translation initiation factors (EIF4G1, EIF4GII and EIF4G2/DAP5) in modulating RAN translation and CGG repeat-associated toxicity. DAP5 knockdown robustly suppressed CGG repeat-associated toxicity and inhibited RAN translation. Furthermore, knockdown of initiation factors that preferentially associate with DAP5 (such as EIF2ß, EIF3F and EIF3G) also selectively suppressed CGG repeat-induced eye degeneration. In mammalian cellular reporter assays, DAP5 knockdown exhibited modest and cell-type specific effects on RAN translation. Taken together, these data support a role for DAP5 in CGG repeat associated toxicity possibly through modulation of RAN translation.


Assuntos
Proteínas de Drosophila , Síndrome do Cromossomo X Frágil , Animais , Drosophila/metabolismo , Tremor/genética , Drosophila melanogaster/metabolismo , Fator de Iniciação 4G em Eucariotos/genética , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/genética , Expansão das Repetições de Trinucleotídeos , Ataxia/genética , Mamíferos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(23): e2300052120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252957

RESUMO

Short trinucleotide expansions at the FMR1 locus are associated with the late-onset condition fragile X-associated tremor/ataxia syndrome (FXTAS), which shows very different clinical and pathological features from fragile X syndrome (associated with longer expansions), with no clear molecular explanation for these marked differences. One prevailing theory posits that the shorter, premutation expansion uniquely causes extreme neurotoxic increases in FMR1 mRNA (i.e., four to eightfold increases), but evidence to support this hypothesis is largely derived from analysis of peripheral blood. We applied single-nucleus RNA sequencing to postmortem frontal cortex and cerebellum from 7 individuals with premutation and matched controls (n = 6) to assess cell type-specific molecular neuropathology. We found only modest upregulation (~1.3-fold) of FMR1 in some glial populations associated with premutation expansions. In premutation cases, we also identified decreased astrocyte proportions in the cortex. Differential expression and gene ontology analysis demonstrated altered neuroregulatory roles of glia. Using network analyses, we identified cell type-specific and region-specific patterns of FMR1 protein target gene dysregulation unique to premutation cases, with notable network dysregulation in the cortical oligodendrocyte lineage. We used pseudotime trajectory analysis to determine how oligodendrocyte development was altered and identified differences in early gene expression in oligodendrocyte trajectories in premutation cases specifically, implicating early cortical glial developmental perturbations. These findings challenge dogma regarding extremely elevated FMR1 increases in FXTAS and implicate glial dysregulation as a critical facet of premutation pathophysiology, representing potential unique therapeutic targets directly derived from the human condition.


Assuntos
Síndrome do Cromossomo X Frágil , Humanos , Síndrome do Cromossomo X Frágil/patologia , Tremor/genética , Expansão das Repetições de Trinucleotídeos , Proteína do X Frágil de Retardo Mental/genética , Proteína do X Frágil de Retardo Mental/metabolismo , Ataxia/genética , Ataxia/patologia , Encéfalo/metabolismo , Astrócitos/metabolismo
18.
Adv Neurobiol ; 30: 225-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36928853

RESUMO

The histories of targeted treatment trials in fragile X syndrome (FXS) are reviewed in animal studies and human trials. Advances in understanding the neurobiology of FXS have identified a number of pathways that are dysregulated in the absence of FMRP and are therefore pathways that can be targeted with new medication. The utilization of quantitative outcome measures to assess efficacy in multiple studies has improved the quality of more recent trials. Current treatment trials including the use of cannabidiol (CBD) topically and metformin orally have positive preliminary data, and both of these medications are available clinically. The use of the phosphodiesterase inhibitor (PDE4D), BPN1440, which raised the level of cAMP that is low in FXS has very promising results for improving cognition in adult males who underwent a controlled trial. There are many more targeted treatments that will undergo trials in FXS, so the future looks bright for new treatments.


Assuntos
Canabidiol , Síndrome do Cromossomo X Frágil , Metformina , Masculino , Adulto , Animais , Humanos , Síndrome do Cromossomo X Frágil/tratamento farmacológico , Síndrome do Cromossomo X Frágil/metabolismo , Metformina/uso terapêutico , Canabidiol/uso terapêutico
19.
Mov Disord Clin Pract ; 10(3): 482-485, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949781

RESUMO

Background: Progressive supranuclear palsy (PSP)-Richardson's syndrome (RS) presents with a distinctive clinical phenotype of supranuclear ophthalmoplegia, parkinsonism, postural instability with falls, and cognitive impairment. Several rare neurological conditions have been described that mimic PSP, and the co-occurrence of dual pathologies has also been described. Cases: In this article, we present 2 cases of patients who presented with a parkinsonian phenotype suggestive of PSP-RS. In 1 case, a family history and early levodopa-induced chorea led to testing for Huntington's disease, and a pathogenic HTT mutation was found. In the second case, magnetic resonance imaging findings led to genetic confirmation of a pathogenic FMR1 mutation. Conclusions: These observations raised the possibility that HD and fragile-X tremor-ataxia syndrome may on occasion present with PSP-RS. Alternatively, and perhaps more likely, is the co-occurrence of 2 rare neurodegenerative conditions. Neuropathological studies of cases involving complex phenotypes in rare genetic conditions are required to better understand the likely pathologies in cases such as these.

20.
Biol Pharm Bull ; 46(2): 139-146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36724941

RESUMO

Repeat-associated non-AUG (RAN) translation is a pathogenic mechanism in which repetitive sequences are translated into aggregation-prone proteins from multiple reading frames, even without a canonical AUG start codon. Since its discovery in spinocerebellar ataxia type 8 (SCA8) and myotonic dystrophy type 1 (DM1), RAN translation is now known to occur in the context of 12 disease-linked repeat expansions. This review discusses recent advances in understanding the regulatory mechanisms controlling RAN translation and its contribution to the pathophysiology of repeat expansion diseases. We discuss the key findings in the context of Fragile X Tremor Ataxia Syndrome (FXTAS), a neurodegenerative disorder caused by a CGG repeat expansion in the 5' untranslated region of FMR1.


Assuntos
Síndrome do Cromossomo X Frágil , Doenças Neurodegenerativas , Humanos , Proteína do X Frágil de Retardo Mental/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Síndrome do Cromossomo X Frágil/patologia , Ataxia/metabolismo , Ataxia/patologia , Tremor/genética , Tremor/metabolismo , Tremor/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...